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abstract: Current methods to model species habitat use through
space and diel time are limited. Development of such models is crit-
ical when considering rapidly changing habitats where species are
forced to adapt to anthropogenic change, often by shifting their diel
activity across space. We use an occupancy modeling framework to
specify the multistate diel occupancy model (MSDOM), which can
evaluate species diel activity against continuous response variables
that may impact diel activity within and across seasons or years. We
used two case studies, fosas in Madagascar and coyotes in Chicago,
Illinois, to conceptualize the application of this model and to quantify
the impacts of human activity on species spatial use in diel time. We
found support that both species varied their habitat use by diel states—
in and across years and by human disturbance. Our results exem-
plify the importance of understanding animal diel activity patterns
and how human disturbance can lead to temporal habitat loss. The
MSDOMwill allow more focused attention in ecology and evolution
studies on the importance of the short temporal scale of diel time in
animal-habitat relationships and lead to improved habitat conserva-
tion and management.

Keywords: camera traps, diel, habitat, multistate, occupancy, spatial-
temporal activity.

No description of where an animal lives and what it
does can be complete without considering when the
activity takes place. (Enright 1970)
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Introduction

Understanding a species’ or community’s habitat is one
of the most fundamental aims of ecology (Mitchell 2005)
and conservation (Campomizzi et al. 2008). Historically,
habitat was defined by Odum et al. (1975, p. 76) as “the
place where an organism lives, or place where one would
go to find it.” This fundamental definition has evolved in re-
cent years to address both space and time, such as “a de-
scription of a physical place, at a particular scale of space
and time, where an organism either actually or potentially
lives” (Kearney 2006, p. 187). Redefining habitat to encom-
pass both spatial and temporal scales has allowed studies to
improve hypotheses of how organisms interact with their
environment (Kearney 2006;Morano et al. 2019), which bet-
ter recognizes how space and time are two fundamental axes
of a species’ niche (Pianka 1973).
Empirical knowledge of species’ habitat has grown with

the development of spatial modeling, including species dis-
tribution (Segurado andAraújo 2004), occupancy (MacKen-
zie et al. 2017), and resource selection (Northrup et al. 2022)
models. Inferences from these models have helped identify
critical habitats of threatened species (Guisan et al. 2013),
manage invasive species (Guisan et al. 2013), and understand
how landscape structure (e.g., landcover) impacts species
habitat use (Hirzel et al. 2006; Angelieri et al. 2016). How-
ever, while the application of these models can identify
fine-scale spatial information of a species’ habitat, they fo-
cus on larger temporal patterns, such as seasonal or yearly
scales (MacKenzie et al. 2003; Fidino and Magle 2017).
Species activity over diel time, typically described via de-
fined modalities like diurnal or nocturnal (Anderson and
Wiens 2017), also has a fundamental role in their space use
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(Pianka 1973). These studies ignore this critical temporal pe-
riod, making it difficult to understand how rapidly chang-
ing conditions and landscapes impact a species’ daily ac-
tivity (Ellis et al. 2010; Helm et al. 2017; Gaston 2019). The
limited studies that do consider space use and diel activity
predominantly treat them separately (i.e., not modeled in
a single framework), such as making spatial inferences via
occupancy modeling (Long et al. 2011) and diel temporal
inference via circular kernel density methods (Ridout and
Linkie 2009). Furthermore, diel temporal changes are often
limited to evaluating binary categorical predictor variables,
such as presence or absence of artificial light, via P values
(Martin et al. 2021). Thus, these models provide only de-
scriptive inferences rather than an explicit estimation of
hypothesized effects from categorical or continuous predic-
tor variables, such as distance to forest (James et al. 2013).
Studies that ignore diel activity when making spatial infer-
ences have largely focused on the “average daily conditions
rather than those prevailing at the time of day when indi-
viduals would tend to be most active” (Gaston 2019, p. 484).
Evaluating space use in diel time is especially urgent given

increasing anthropogenic pressures across landscapes glob-
ally (Ellis et al. 2010). If species can adjust their diel activ-
ity, then it could be a mechanism by which they adapt to
changing landscapes, climate, or ecological communities. For
instance, mesocarnivores and large carnivores have been
found to increase their nocturnal activity in urbanized areas
(Gehrt 2007; Carter et al. 2012), likely to avoid time periods
when humans are most active (Gaynor et al. 2018). During
hunting seasons, harvested species such as deer can become
more nocturnal to avoid hunters (Kilgo et al. 1998). Ani-
mals may also change their diel activity in the presence
of introduced species, as is the case with many mammals
(ungulates, carnivores, and small mammals) that tempo-
rally avoid domestic dogs (Lenth et al. 2008; Farris et al.
2015a, 2015b). By modifying behavior across the 24-h light-
dark cycle, species can access space that would otherwise
be inaccessible. This flexibility, however, may have physio-
logical, morphological, or even ecological constraints, such
as limited diel periods in which food is available for hunt-
ing or foraging (Kronfeld-Schor et al. 2017). Understand-
ing a species’ spatial activity across diel time use can there-
fore provide insight into these constraints, leading to a more
complete understanding of where species live and how pres-
sures impact their daily habitat. For example, a species may
lose spatial resources altogether or lose spatial resources dur-
ing a specific diel time period, such as hours when humans
are most active (Ellington et al. 2020). Pumas (Felis concolor),
for instance, exhibit diminished daily access to food resources
in response to simulated human disturbance via playback
(Smith et al. 2017). By considering spatial and temporal hab-
itat jointly in a single modeling framework, we can explic-
itly evaluate hypotheses regarding how an animal’s relation-
ship with the landscape changes as humans alter resources
and the risk of obtaining those resources.
With increasing availability of camera traps, which al-

low for passive and continuous sampling of wild animal
populations (Rovero et al. 2013), we also have increasing
access to fine-scale spatial-temporal data required for joint
analyses of space use and diel activity. To advance theories
of ecology and their application, we require a single model-
ing framework that can incorporate continuous covariates
on diel behavior and account for variation in detectability
and in sampling methodology. Developing a flexible model
such as this will help bridge gaps in the capabilities of the
few existing diel habitat models (Distiller et al. 2020; Gallo
et al. 2021). As such, we specify static and dynamic occu-
pancy models (MacKenzie et al. 2017) in a Bayesian frame-
work to incorporate diel activity information and varia-
tion in detection and sampling methodology through the
incorporation of random effects (multistate diel occupancy
models [MSDOMs]). We exemplify these models by inves-
tigating how anthropogenic development and activity may
alter simultaneously where and when species occur. We do
so by presenting a case study on Madagascar’s largest en-
demic carnivore, the fosa (Cryptoprocta ferox), to demon-
strate the static MSDOM, and a case study on the urban
ecology of coyotes (Canis latrans) to demonstrate the dy-
namic MSDOM. With this adapted model and the grow-
ing availability of spatial and temporal data, it is possible
to evaluate hypotheses on wildlife diel activity across space
and through time, which represents a major advancement
over current methods (Distiller et al. 2020; Azzou et al. 2021;
Gallo et al. 2021).
Material and Methods

Multistate Diel Occupancy Models

Static Model: A Single-Season Occupancy Analysis. The
MSDOM is a form of themultistate occupancymodel with
state uncertainty (Nichols et al. 2007; MacKenzie et al. 2009)
and is defined below with four states equivalent to the
original co-occurrence model (MacKenzie et al. 2004) with
two species; the static model can also be understood as a spe-
cial case of the species co-occurrence model by Rota et al.
(2016) and the dynamic model as a special case of Fidino
et al. (2019). However, the MSDOM considers biologically
important diel time periods for state segregation; this seg-
regation can be based on any set of time periods of interest.
In our case, sites are defined in one of four (M p 4) mutu-
ally exclusive states: (1) no use, (2) day use, (3) night use,
and (4) night and day use. While these are coarse categori-
zations for diel behavior, these states provide us the ability
to quantify the strength of drivers to diel shifts across con-
tinuous space and therefore identify biologically informed
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thresholds for species diel habitat use. Surveys are con-
ducted over spatial locations, or camera trap sites (i p
1, ::: ,N), which are independently sampled on j p 1, ::: ,K
occasions (e.g., days or weeks). Our state definitions do not
follow a hierarchical ordering, as commonly applied in mul-
tistate occupancy models (Nichols et al. 2007) and imple-
mented in R packages (unmarked; Fiske and Chandler 2011).
For example, if site i was observed in state 2, it precludes
the site from ever being in state 3, as these states do not co-
occur over a given survey period.
Full model (no covariates). Let wm be the probability

that a site is in occupancy state m, where w p [w1w2w3w4]
is the state probability vector, w1 p 12 w2 2 w3 2 w4, and
1#w p 1 (see the parameter descriptions in app. S).
The marginal occupancy probability (regardless of state)
is w• p w2 1 w3 1 w4. Then, let pm,l

j be the probability of
observing the occupancy state l given that the true state
is m in survey j. The detection probability matrix for sur-
vey j (assuming no site or survey variation) isM#M with
the observed (columns) and true states (row)with rows sum-
ming to 1:
P p

1 0 0 0
12 pDay:M pDay:M 0 0
12 pNight:M 0 pNight:M 0

(12 pDay:M)(12 pNight:M) pDay:M(12 pNight:M) (12 pDay:M)pNight:M pDay:MpNight:M

3
775:

ð3Þ
P p

1 0 0 0
12 p2,2 p2,2 0 0
12 p3,3 0 p3,3 0
p1,4 p2,4 p3,4 p4,4

2
664

3
775: ð1Þ

Together, the true occupancy state for site i is de-
fined by the latent variable, z i ∼ Categorical(w),
and the observed state in survey j is defined as

ð1Þ
2
664
yij ∼ Categorical(Pzi ,1:M).TakingaBayesianmodeling frame-
work, we can assume diffuse prior distributions for model
parameters as w,P4,1:M ∼Dirichlet(1, 1, 1, 1) and p2,2, p3,3 ∼
Beta(1, 1). Note that in this full model, there is no relation-
ship among state-specific detection probabilities (i.e.,
p2,2, p3,3, P4,1:M) and occupancy probabilities (i.e., w2, w3,
w4) across associated M states. Specifically, state 4 (night
and day use) occupancy and detection is not defined by
state 2 (day use) and state 3 (night use). This suggests that
there is a fundamental difference between sites or species
activity that occupy state 4. Species present during the
night-and-day-use state may be cathemeral, indicating
that they have intermediate adaptations allowing them be-
havioral flexibility to manage disturbance (Bennie et al.
2014). We can also estimate a species’ temporal use on
the landscape by conditioning on species presence to ex-
amine how species navigate anthropogenic features via time
partitioning. We do this by investigating an occupied state
of interest over the sum of all occupied states. For example,
the likelihood a species will use the night-use state given it
is present is w3=w•.
Reduced model (no covariates). The reduced model is
a simpler parameterization that defines the occupancy and
detection probabilities of state 4 (night and day use) as the
product of states 2 and 3. Therefore, we assume that the
diel time periods of night and day are independent ran-
dom events, allowing their probability products (detection
and occupancy) to result in the probability of occurring
or being detected during the night and day. Here, we can
redefine our model in terms of the probability of using a
site during the day, regardless of use at night (marginal prob-
ability; wDay.M), and the probability of using a site at night,
regardless of use during the day (wNight.M). Our state occu-
pancy probabilities are then

w1 p (12 wDay:M)(12 wNight:M),

w2 p wDay:M(12 wNight:M),

w3 p (12 wDay:M)wNight:M,

w4 p wDay:MwNight:M:

ð2Þ

Similarly, we can define P using the probability of detec-
tion during the day (pDay.M) and night (pNight.M) as
We can assume diffuse prior distributions for our reduced
model parameters: wDay.M, wNight.M, pDay.M, pNight:M ∼ Beta(1, 1).
Null model. It is important to compare more complex

models with one that does not consider diel time partition-
ing. This null model would thus be a single-season occu-
pancy model (MacKenzie et al. 2002), cast in a multistate
framework for model comparison purposes. Our state oc-
cupancy probabilities are then

w1 p 12 w•,

w2 p w•=3,

w3 p w•=3,

w4 p w•=3,

ð4Þ

with the following detection matrix:

P p

1 0 0 0
12 p• p• 0 0
12 p• 0 p• 0
12 p• p•=3 p•=3 p•=3

2
664

3
775: ð5Þ
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We can assume the following diffuse prior distributions for
the null model parameters: w•, p• ∼ Beta(1, 1).
Models with covariates. All versions of the MSDOM (full,

reduced, null) allow for the incorporation of site-level co-
variates as explanatory variables of w and P and survey-
level covariates for P. We use separate design matrices for
modeling each state (xDay

i , xNight
i , xND

i ) that for each site i
are 1#Qm (the number of columns) and associated vec-
tors of coefficients (aDay, aNight, aND) that are Qm#1. We
link state-specific linearmodels with occupancy probabilities
using the multinomial logit link. The full model with co-
variates is specified as

w1
i p f1

i =(f1
i 1 f2

i 1 f3
i 1 f4

i ),
w2

i p f2
i =(f1

i 1 f2
i 1 f3

i 1 f4
i ),

w3
i p f3

i =(f1
i 1 f2

i 1 f3
i 1 f4

i ),
w4

i p f4
i =(f1

i 1 f2
i 1 f3

i 1 f4
i ),

f1
i p 1,

f2
i p ex

Day
i aDay ,

f3
i p ex

Night
i aNight ,

f4
i p ex

Day
i aDay 1 x

Night
i aNight 1 xNDaND :

ð6Þ

Here, f2
i and f3

i contain only first-order parameters, which
respectively represent the log odds that a species occupies
t p

(12 gD)(12 gN) gD(12 gN) (12 gD)gN gDgN

εD(12 gNjD) (12 εD)(12 gNjD) εDgNjD (12 εD)gNjD

(12 gDjN)εN gDjNεN (12 gDjN)(12 εN) gDjN(12 εN)
εDjNεNjD (12 εDjN)εNjD εDjN(12 εNjD) (12 εDjN)(12 εNjD)

2
664

3
775,

ð8Þð8Þ
site i in either state 2 or state 3
(i.e., they are associated with a
single state). The parameterf4

i ,
however, also contains second-
order parameters (xND

i aND),
which represent the log odds
differenceaspeciesoccupiessite
i inthenight-and-day-usestate
relative to theaforementioned

first-order parameters (seeDai et al. 2013). Thus, the second-
orderparameters for thenight-and-day-use state allowus to
evaluate whether this state is different from the day-use and
night-use states combined. To specify the reduced model,
we remove xND

i aND from the linear model on f4
i . The null

model with covariates is recast to leverage the unoccupied
state equally to the combination of the identical but multi-
ple occupied states as

f1
i p 3,

f2
i p exia,

f3
i p exia,

f4
i p exia:

ð7Þ

We can assume diffuse prior distributions for all coeffi-
cients as am ∼ Logistic(0, 1) (Northrup and Gerber 2018).
Including covariates on the detection matrix similarly uses
the multinomial logit link (see Gerber et al. 2022).

Dynamic Model: Across-Season Occupancy Analysis. The
dynamic MSDOM considers how site use at the diel scale
changes over longer timescales, such as seasons or years.
The sampling protocol is identical to that of a static
MSDOM, except that sites are sampled over t p 1, ::: ,T
primary sampling periods. Furthermore, we assume the
occupancy state, zi,t, depends on the state in the previous
primary period, z i,t21, which allows transitions to be esti-
mated in terms of state-specific local colonization (g)
and extinction (ε) for all sampling periods except the first.
Instead, we estimate initial occupancy for the first sam-
pling period as we did for the static MSDOM. For all dy-
namic MSDOM, let t be an M#M transition matrix
whose rows sum to 1 and contains the rates that describe
the probability a site either stays in the same occupancy
state or transitions to a new state from one primary sam-
pling period to the next.

Full Model (No Covariates). While the most general full
model would independently estimate allM#M transitions
among states, such a model may be difficult to fit with typ-
ical sample sizes from real-world data. Thus, we imposed a
few biologically reasonable constraints to reduce the num-
ber of model parameters and allow for more sparse but re-
alistic data sets to be used. For the full model, let t be
where the rows respectively describe state transitions
from the four occupancy states. For example, the prob-
ability a site changes from state 2 (day use) to state 3
(night use) is t2,3 p εDgNjD, where εD is the site extinc-
tion probability in the day-use state and gNFD is the
probability of colonization of the night-use state given
the day-use state in the previous primary period. We as-
sume that transitions depend on the state in the previous
primary period and that transitions from occupied states
(i.e., 2, 3, or 4) may not be equivalent to transitions from
the unoccupied state (i.e., state 1).
As with the full static MSDOM, the initial occupancy

probability of the four states at t p 1 is wi p [w1
iw

2
iw

3
iw

4
i ].

The latent state of the model is then z i,1 ∼ Categorical(wi)
for t p 1 and z i,t ∼ Categorical(tzi,t21,1:M) for t 1 1, where
z i,t21 indexes the appropriate row of t. The observed state
is specified like the full static MSDOM except we indexed
the observed data and latent state through time such that
yijt ∼ Categorical(Pzi,t ,1:M), where P is equation (1) and zi,t
indexes the appropriate row of P. Finally, we assume
the same diffuse prior distributions as the full static
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MSDOM for w and P, while all colonization (g) and ex-
tinction (ε) parameters have their own respective Beta(1, 1)
distributions.
Reduced model (no covariates). The reduced dynamic

model is similar to the full dynamic model except initial
occupancy becomes equation (2), t lacks conditional pa-
rameters, and P becomes equation (3). Therefore, t sim-
plifies to
t p

(12 gD)(12 gN) gD(12 gN) (12 gD)gN gDgN

εD(12 gN) (12 εD)(12 gN) εDgN (12 εD)gN

(12 gD)εN gDεN (12 gD)(12 εN) gD(12 εN)
εDεN (12 εD)εN εD(12 εN) (12 εD)(12 εN)

2
664

3
775:

ð9Þ

ð9Þ
With the exclusion of conditional parameters, this
model assumes that transitions between day and night
qi p

1 eb
gD

i eb
gN

i eb
gD

i 1 b
gN

i

eb
εD
i 1 eb

εD
i 1 bgN

i 1 bgNjD
i eb

gN

i 1 b
gNjD
i

eb
εN
i eb

gD

i 1 b
gDjN
i 1 bε

N

i 1 eb
gD

i 1 b
gDjN
i

eb
εD
i 1 bεDjN

i 1 bεN

i 1 bεNjD
i eb

εD
i 1 bε

NjD
i eb

εD
i 1 bε

DjN
i 1

2
6664

3
7775:

ð12Þð12Þ
are independent random events.
Null model (no covariates). Cast-

ing the dynamic MSDOM as a stan-
dard multiseason occupancy model
requires splitting the associated colo-
nization and extinction probabilities
across each respective row of t to en-
sure each row still sums to 1, such that
t p

12 g g=3 g=3 g=3
ε (12 ε)=3 (12 ε)=3 (12 ε)=3
ε (12 ε)=3 (12 ε)=3 (12 ε)=3
ε (12 ε)=3 (12 ε)=3 (12 ε)=3

2
664

3
775:

ð10Þ
As with the static null MSDOM, initial occupancy be-
comes equation (4) and P becomes equation (5).
Models with covariates. As with the static MSDOM,

transition probabilities for each dynamic model can be
made a function of covariates. To do so, we use separate
design matrices for each model parameter, which are
1#Qm (e.g., xD

i , xN
i , xDjN

i , and xNjD
i ) and associated

vectors of coefficients that are Qm#1 (e.g., bD, bN, dD,
dN, gDjN, gNjD, hDjN, and hNjD). Temporal or spatiotempo-
ral covariates may also be included in dynamic MSDOM,
resulting in T#Qm design matrices for colonization, ex-
tinction, or detection parameters. Following Fidino et al.
(2019), the linear predictors for the parameters of the full
model are

bgD

i p xD
i b

D,
bgD

i p xN
i b

N,
bεD

i p xD
i d

D,
bεD
i p xN

i d
N,

bgDjN
i p xDjN

i gDjN,

bgNjD
i p xNjD

i gNjD,
bϵDjN
i p xDjN

i hDjN,
bεNjD
i p xNjD

i hNjD,

ð11Þ
for the dynamic model; bgD

i , bgN

i , bεD
i , b

εN
i are first-order

parameters, while bgDjN
i , bgNjD

i , bϵDjN
i , and bεNjD

i are second-
order parameters. In this case, the second-order param-
eters are the log odds difference given the presence of
another state in either the current time step (t) for occu-
pancy and detection or in the previous time step (t 2 1)
for colonization and extinction. Let q be a matrix with
the same dimensions as t that contains the linear pre-
dictors of the dynamic model.
We set the diagonal of the
matrix as the reference cate-
gory so that transitions are es-
timated relative to a site stay-
ing in the same state from
one time step to the next:
Dividing each element of a row by its respective row
sum (i.e., applying the multinomial logit link) converts
qi to ti (Fidino et al. 2019). The reduced model removes
all second-order parameters from qi and becomes

qi p

1 eb
gD

i eb
gN

i eb
gD

i 1 b
gN

i

eb
εD
i 1 eb

εD
i 1 bgN

i eb
gN

i

eb
εN
i eb

gD

i 1 bε
N
i 1 eb

gD

i

eb
εD
i 1 bεN

i eb
εN
i eb

εD
i 1

2
6664

3
7775:

ð13Þ
The null model, which is a multiseason occupancy model
with covariates, qi, becomes

qi p

3 eb
g
i eb

g
i eb

g
i

3#eb
ε
i 1 1 1

3#eb
ε
i 1 1 1

3#eb
ε
i 1 1 1

2
664

3
775, ð14Þ

where bg
i and bε

i are respectively logit linear predictors
for colonization and extinction. The dynamic MSDOM
with covariates uses the same process to incorporate
detection-level covariates, save for the fact that the detec-
tion matrix and data vary across the secondary sampling
periods.



Rethinking Diel Habitat Modeling 561
Fosa Case Study

Fosas are a medium-sized carnivore (5.5–9.9 kg; Good-
man 2012) in the monophyletic Eupleridae family, which
is endemic to Madagascar. Fosas face increasing anthro-
pogenic pressure from deforestation (Morelli et al. 2020),
unsustainable hunting (Golden 2009), and exotic species
(Farris et al. 2017). As a generalist species with a diverse
diet, activity of fosas near human settlements and their
consumption of livestock has caused conflict with humans
(Kotschwar Logan et al. 2014; Borgerson 2016). Previous
studies show that their diel activity is largely cathemeral
(Gerber et al. 2012a; Farris et al. 2015a). Their ubiquitous
occurrence across forests and use of the entire 24-h period
(Gerber et al., forthcoming) make them an exemplar spe-
cies to investigate the utility of MSDOM in the context of
human disturbance. We analyzed data from Makira Nat-
ural Park (Farris et al. 2015b) and Ranomafana National
Park (Gerber et al. 2012a; see table S5) regions.
These two parks have unique histories that have shaped

differing human activity in each region (changes in forest
cover, agriculture, invasive species introduction, etc.) and
subsequent impact on native wildlife species (Goodman
et al. 2019). As such, we have formed unique hypotheses
about anthropogenic factors that impact fosas in these re-
gions. Given high human activity within forests of Makira
(Farris et al. 2015b) compared with Ranomafana (Gerber
et al. 2012b; Farris et al. 2017), we used human activity at
camera locations to quantify human disturbance. Human
activity was calculated as the number of human detection
events (photos taken within 30-min intervals) per diel pe-
riod (i.e., day and night) for each camera site divided by
the number of sampling days the site was active. At Rano-
mafana, human activity within the protected boundaries
was low, in contrast to Makira. The riskiest areas for fosas
at Ranomafana were found outside the park boundaries or
along forest edges, where villages are located and there is
high human activity. Therefore, we used the distance to
the nearest village and distance to the nearest matrix (non-
forest) from each camera trap to quantify human distur-
bance (for details, see Gerber et al. 2012a).
We fitted static MSDOMs to the Makira and Ranoma-

fana data separately. For both regions, we hypothesized
that occupancy would vary in diel time by the level of dis-
turbance. We also hypothesized that the day-use state
would be occupied least by fosas because of diurnal hu-
man activity near areas of high disturbance. Specifically,
we predicted that fosa occupancy during the day would
decrease with increasing human disturbance and that fosa
occupancy at night would be higher than day occupancy, re-
gardless of human disturbance.We also expected increasing
night occupancy with increasing human disturbance. Day
was defined by hours after civil sunrise and before civil sun-
set, while night was defined by hours following civil sunset
and before civil sunrise, calculated using the package sun-
calc (Thieurmel and Elmarhraoui 2019) in R version 4.0.2.
To determine detected diel states of fosas, we used 6-day
occasions. All models were coded and fitted in JAGS ver-
sion 4.0.2 (Plummer 2003) with the runjags package (Den-
wood 2016) in R version 4.0.2.We assessed convergence us-
ing theGelman-Rubin diagnostic (Gelman andRubin 1992)
to ensure that all values were !1.1 and by visually examin-
ing trace plots of the posterior distributions.We compared
models using the conditional predictive ordinate (CPO;
Hooten and Hobbs 2015) and evaluated evidence of an
effect with the most supported model by investigating
whether 95% credible intervals (CIs) of parameter estimates
included zero and deriving the probability of an effect being
less than or greater than zero.
We fitted 18 candidate models to two years (one season

per year) of Ranomafana data (table S6): full, reduced,
and null model, each with state occupancy modeled with
and without individual covariates (distance to village and
matrix were modeled separately) and a categorical vari-
able for survey. Over the two years, 111 camera traps were
deployed 420–670 m apart across four primary, selectively
logged, and fragmented forests sites totaling in an area
roughly 33.5 km2 (Gerber et al. 2012b). Detection param-
eters were not modeled with covariates. The most sup-
portedmodel was the fullmodel with the covariate distance
to village influencing state occupancy. We found strong
support for (1) variation in state occurrence (fig. 1) and de-
tection (see fig. S1; table S7) and (2) multistate occurrence
varying with human disturbance (fig. 2A). We found little
support that day occurrence varied by distance to village
based on the mode and 95% CI (aDay,Dist:Vill p 20:002,
95% CI p 21:31 to 1.37), with only a 0.50 probability
that the distribution was above zero (fig. 1). This did not
support our hypothesis. However, we found moderate to
strong support that night-day occurrence increased with
distance to village (aND,Dist:Vill p 1:45, 95% CI p 20:17
to 2.95, Pr(aND,Dist:Vill 1 0) p 0:97), supporting our hy-
pothesis. These results suggest that if fosas use sites during
day hours, it is in conjunction with night hours, and the
probability of using sites during the day is greater farther
away from human disturbance. We also found moderate
to strong support that night-use state occurrence declined
with increasing distance to village (aNight,Dist:Vill p 21:16,
95% CI p 22:38 to 20.02, Pr(aNight,Dist:Vill ! 0) p 0:98).
Results from conditional probabilities of use (given that
fosas are present) revealed similar probabilities (fig. 2B)
to those of occurrence. This was due to the widespread dis-
tribution of fosas within the study area. We found that the
probability of detecting a fosa at night, given that it was
present during the day and night (p4,3), to be the highest de-
tection probability (see fig. S1; table S7). Detection of a fosa
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during the day-night state (p4,4) was the lowest. This sug-
gests that this low density and wide-ranging species does
use sites during the day and night, but not regularly.
We fit six candidate models to 7 years (one season per

year) of Makira data (table S8): full, reduced, and null
model, each with and without the human activity covariate.
Detection parameters were not modeled with covariates.
From 2008 to 2015, 18–26 camera trap stations (with two
cameras per station) were deployed roughly 500 m apart
across seven sites with varying levels of forest degradation
(Farris et al. 2015a, 2015b). We found all models to fit
the data (.1 1 Bayesian goodness-of-fit P value ! .9). We
found the most supported model to be the full model with-
out an effect of human activity. These results support that
there is variation in multistate occurrence and detection,
but not regarding our hypothesis that human disturbance
influenced occurrence. We found that fosa occupancy was
highest during the night-use state (w3 p 0:33, 95% CI p
0:11 to 0.60), followed by the day-use state (w2 p 0:20,
95% CI p 0:06 to 0.44) and the night-and-day-use state
(w4 p 0:18, 95% CI p 0:05 to 0.41; fig. 3). The large para-
metric uncertainty of the detection parameters made draw-
ing conclusions difficult, although results indicate that fosas
are most detectable at night when present during the night-
and-day-use state (fig. S2; table S9).
Figure 1: Posterior distributions of fosa (Cryptoprocta ferox)
state occupancy model parameters for the most supported model
using the Ranomafana National Park data. Shaded areas represent
the 50% probability density, and dark lines indicate the posterior
mode. Y-axis labels with “Int” indicate an intercept for the states
(day use, night use, and night and day use [ND]), and “Dist.Vill”
indicates the slope parameter associated with the variable distance
to village.
Figure 2: A, Probability of use for fosas (Cryptoprocta ferox) for each
diel category with the expected value, E(X); themedian of the posterior
of a given parameter; and the 95% credible interval (CI). B, Probability
of use for fosas for each diel category given that fosas are present with
E(X) and 95%CI (note that state 1 [no use] is not included here). Both
are estimated from the most supported model using the Ranomafana
National Park data, which incorporated the covariate distance to vil-
lage.
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Coyote Case Study

Coyotes are a medium-sized carnivore (8–14 kg; Bekoff
and Gese 2003) native to North America that have ex-
panded their distribution across the United States, Canada,
and South America in the last century (Hody and Kays
2018). As generalists, coyotes exploit an array of habitats
from prairies to urban cities (Elliot et al. 2016). Coyote diel
activity is quite plastic, specifically in the presence of an-
thropogenic disturbance (Way et al. 2004; Gehrt et al.
2007). Therefore, we quantified whether coyotes modify
their diel activity along an urbanized gradient.
To do so, we fit dynamic MSDOMs to 13 sampling

periods of camera trapping data collected between July
2016 and July 2019 in the greater Chicago metropolitan
area. Camera deployments followed protocols outlined
by the Urban Wildlife Information Network (see Magle
et al. 2019). In brief, 105 cameras were placed along three
50-km transects radiating outward from downtown Chi-
cago, Illinois (table S10). Cameras were a minimum of 1 km
apart and were located within a 2-km buffer of their respec-
tive transects. Data were summarized such that each 4-week
deployment (July 2016, October 2016, etc.) was treated as a
primary sampling period and each week was a secondary
sampling period. To determine the detected diel state for
a given week (occasion length), we used the suncalc pack-
age in R following the same diel categorization process as
in the fosa study. While the static MSDOM (with four
states) can potentially have three linear predictors for the
latent state, the dynamicMSDOMpotentially has 11, thereby
exacerbating the number of different covariate combina-
tions and parameters to be estimated. To simplify our
model fitting strategy, we fitted three models that differed
in their fundamental structure (i.e., the full, reduced, and
null dynamic MSDOM) and included an urban intensity
metric on all first-order parameters. We made two addi-
tional changes to the full model because daytime coyote
detections were sparse (n p 54) relative to night (n p 286)
Figure 3: Posterior distributions of fosa (Cryptoprocta ferox) state occupancy model parameters (mean across all sites) for the most sup-
ported model using the Makira Natural Park data. Shaded areas represent the 50% probability density, and dark lines indicate the posterior
mode. w2 is the probability a species is present during the day only, w3 is the probability a species is present during the night only, and w4 is
the probability a species is present during the night and day.
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or night and day (n p 183). First, we excluded urban in-
tensity on second-order colonization or extinction pa-
rameters because second-order slope terms failed to con-
verge when included. Second, we used equation (3) as
the detection matrix, which assumes that the probability
of detecting night and day use (state 4) as the product of
the probabilities of detecting day use (state 2) and night
use (state 3). Models were compared with CPO, and we
evaluated evidence of an effect with the best-fit model by
investigating whether 95% CIs of parameter estimates in-
cluded zero and deriving the probability of an effect being
less than or greater than zero.
To derive the urban intensity metric, we used princi-

pal component analysis for tree cover (%; CMAP 2016),
impervious cover (%; CMAP 2016), and housing density
(units km22; Hammer et al. 2004) within a 1-km buffer
of each sampling location. Negative values represented in-
creased forest cover coupled with decreased impervious
cover and housing density, while positive values represented
increased levels of impervious cover and housing density
coupled with low canopy cover. Models were fit in JAGS
version 4.3.0 inR version 4.0.3.We evaluatedmodel conver-
gence by inspecting trace plots to ensure proper mixing and
using the Gelman-Rubin statistic.
Of the possible 1,365 deployments (105 sites across

13 sampling periods), we collected data for 1,172 deploy-
ments. The no-use state was the most observed (n p 650),
followed by the night-use state (n p 286), the night-and-
day-use state (n p 183), and the day-use state (n p 53).
Overall, the full model (22 parameters, CPO p 3,131:46)
had the most support, followed by the reduced model
(16 parameters, CPO p 3,209:17) and then the null model
(eight parameters, CPO p 3,334:52). With the most
supportedmodel, the average occupancy probability during
the first season was 0.41 for the no-use state (95% CI p
0:26 to 0.56), 0.18 for the day-use state (95% CI p 0:06
to 0.33), 0.07 for the night-use state (95% CI p 0:01
to 0.19), and 0.32 for the night-and-day-use state
(95% CI p 0:19 to 0.48). Thus, assuming a site was occu-
pied by coyotes during the first primary period, coyotes
were on average most likely to use sites during the day
and night. Across the urbanization gradient, the day-use
state was more negatively associated with urban intensity
(aD

URB p 21:05, 95% CI p 21:98 to 20.07, Pr(aD
URB !

0) p 0:99) than the night-use state (aN
URB p 20:65,

95% CI p 21:51 to 0.18, Pr(aN
URB ! 0) p 0:94). There

was some evidence that the night-and-day-use state became
more common with increasing urban intensity, but 95%
CIs for this second-order parameter overlapped zero
(aDN

URB p 1:14, 95% CI p 20:08 to 2.50, Pr(aDN
URB 1 0) p

0:97). While the initial occupancy parameters demon-
strate that the day-use state decreases with increasing levels
of urban intensity, it is only a snapshot of the underlying
process. The dynamic MSDOM provides new ways to assess
this relationship through additional manipulations of the
latent-state transition probabilitymatrix (t), which describe
the processes that bring about coyote occupancy.
While it is important to explore the underlying coloni-

zation and extinction dynamics of the model, it is possible
to derive the expected probability of each occupancy state
at each site as well by solving the equation di p diti,
where

P
di p 1. Here, di is the normalized first left eigen-

vector of ti and represents the stationary occupancy prob-
ability of each state at site i given ti (Fidino et al. 2019).
Solving this equation simplifies the I#M#M transition
matrix into I#M occupancy probabilities and therefore
can highlight the overall pattern across an environmental
gradient. We applied this equation to the entire posterior
of ti,t and generated stationary occupancy states at hypo-
thetical sites across Chicago’s urbanization gradient. Fol-
lowing this, the probability of use of the different coyote
occupancy states, conditional on coyote presence, can be
derived by calculating the conditional probability of the
day-use state, the night-use state, and the night-and-
day-use state given coyote presence. For example,
Pr(dNi jcoyote presence) p dNi =(d

D
i 1 dNi 1 dDNi ). Plotting

these relationships reveals that while the night-and-night-
use state is the most likely category at low levels of urban
intensity, it is replaced by the night-use state as urban inten-
sity increases, assuming coyotes are present (fig. 4).
The transitions among different states can be plotted

out and interpreted through the parameters that describe
them (fig. 5). For example, sites without coyotes were
most likely to stay in the no-use state across all levels of
urban intensity, although this relationship became more
pronounced at high levels of urban intensity (fig. 5).
The transitions from the no-use state, which are described
by gD and gN, were driven by the strongly negative first-
order colonization intercepts for the day-use state
(bDINT p 22:95, 95% CI p 23:88 to 22.14, Pr(bDINT !
0) p 1:00) and the night-use state (bNINT p 21:47,
95% CI p 21:85 to21.10, Pr(bNINT ! 0) p 1:00), as well
as a negative association between the night-use state
and urban intensity (bNURB p 20:36, 95% CI p 20:62
to 20.09, Pr(bNURB ! 0) p 0:99). There was weak support
that colonization of the day-use state negatively covaried
with urban intensity (bDURB p 20:28, 95% CI p 20:74 to
0.16, Pr(bDURB ! 0) p 0:89). While the night-use state
negatively covaried with urban intensity, the relatively
less negative intercept of this level of the model (i.e.,
bNINT 1 bDINT) made night use the most likely diel category
for coyotes to colonize along the gradient of urban inten-
sity (fig. 5).
When a site was in the night-use state, transitions are

described by εN and gDFN. At average levels of urban in-
tensity, sites were most likely to transition to the no-use
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state (0.53, 95% CI p 0:30 to 0.73), followed by the
night-use state (0.26, 95% CI p 0:08 to 0.50), the day-
use state (0.13, 95% CI p 0:02 to 0.30), and then the
night-and-day-use state (0.06, 95% CI p 0:01 to 0.17).
The large increase in the night-and-day-use state was
driven by the positive second-order night-use coloniza-
tion parameter (gNjDINT p 2:82, 95% CI p 1:60 to 4.52,
Pr( gNjDINT 1 0) p 1:00), whereas the decreasing transition
probability of the day-use state to the night-and-day-use
state was governed by the negative first-order night-use
colonization slope term (bNURB, listed above). Likewise,
first-order day-use extinction rates were relatively modest
(dD

INT p 20:72, 95% CI p 22:02 to 0.43, Pr(dD
INT !

0) p 0:90) and covaried little with urban intensity
(dD

URB p 0:10, 95% CI p 21:04 to 0.85, Pr(dD
URB 1 0) p

0:54). As a result, dD
INT and dD

URB generated relatively flat
transitions from the day-use state to the no-use state,
the night-use state, or back to the day-use state (fig. 5).
Finally, for the night-and-day-use state, transitions

are described by εDFN and εNFD. Second-order parameters
associated with these probabilities were both strongly
negative (hDjN

INT p 21:89, 95% CI p 23:67 to 20.17,
Pr(hDjN

INT ! 0) p 0:99; hNjD
INT p 21:79, 95% CI p 22:70

to 20.98, Pr(hNjD
INT ! 0) p 1:00). When these second-

order parameters are combined with the relatively small
influence urban intensity had on first-order extinction
parameters (i.e., dD

INT and dN
INT), sites in the night-and-

night-use state were by far more likely to remain in this
state (fig. 5).
With regard to detectability, if a site was in the day-

use state, the probability of detecting that state was
0.15 ( 95% CI p 0:12 to 0.18) at average levels of ur-
ban intensity and covaried little with urban intensity
( f DURB p 0:03, 95% CI p 20:20 to 0.22, Pr( f DURB 1
0) p 0:56). The ability to detect the night-use state
was, on average, double that of the day-use state (0.30,
95% CI p 0:28 to 0.33) but was minimally and nega-
tively associated with urban intensity ( f NURB p 20:13,
95% CIp 20:24 to20.01, Pr( f NURB ! 0) p 0:99). When
a site was in the night-and-day-use state, at average levels
of urban intensity we were most likely to observe the site as
the no-use state (0.59, 95% CI p 0:56 to 0.62), followed
by the night-use state (0.26, 95% CI p 0:23 to 0.28), the
day-use state (0.10, 95% CI p 0:09 to 0.12), and then
the night-and-day-use state (0.04, 95% CI p 0:04 to 0.05).
Discussion

The study of animal-habitat relationships has often fo-
cused on identifying spatial drivers of species occurrence
while largely ignoring when species use habitat within
the diel period. We specified theMSDOM to allow species’
diel spatial habitat use to be studied within and across
Figure 4: A, As urban intensity increases, coyote occupancy de-
creases and the most likely diel state changes from the night-
and-day-use state to the night-use state. Horizontal black lines
represent the expected occupancy probability of coyotes (Canis
latrans) in each diel category, while shaded ribbons represent
95% credible intervals. State 1 (no use) was excluded. B, If coyotes
are present at a site, this panel illustrates the most likely diel state
the species will take along a gradient of urban intensity. Horizontal
black lines represent the conditional probability of use for each
diel state, and shaded ribbons are 95% credible intervals. State 1
(no use) was excluded. All probabilities were estimated from 13
sampling periods of camera trapping data from 1,172 deployments
at 105 unique sites between July 2016 and July 2019 in Chicago,
Illinois.
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seasons or years. Importantly, thismodel allows for contin-
uous covariates and accounts for variation in detectability
and sampling methodology, a source of heterogeneity that
is typically unmodeled when analyzing diel activity and is
necessary to produce unbiased parameter estimates. The
utility of the MSDOM is especially pertinent to studying
species at risk to human activities where researchers may
want to consider additional anthropogenic covariates, such
as noise, artificial lighting, and so on. For those who may
want to explore this model with archived data, the ability
to incorporate random effects can help accommodate var-
iable sampling schemes, such as unmeasured variation across
sites or sampling seasons. MSDOM is best suited for camera
trap data or other passive 24-h (or relevant diel time periods)
detection/nondetection sampling techniques. While our case
studies show thatMSDOMs can be used with large and small
data sets, it is important to temper expectations with sparse
detections (many zeros in the detection history), rare species,
or fewer sites (e.g., !50). When these issues arise, it may be
best to avoid the full model implementation and reduce
parameter complexity using the reduced model. Alterna-
tively, prior information may be incorporated, especially
on the detection components, or multiple studies can be
linked together (e.g., our fosa examples) to increase statis-
tical power. Likewise, if these issues create problems when
fitting a dynamic MSDOM, the model could be further
simplified to estimate occupancy in each time step instead
of local colonization and extinction via an autologistic pa-
rameterization, following Kass et al. (2020). Doing so may
make it possible to leverage smaller, long-term camera trap
data sets to address questions about a species’ diel activity.
We recommend that future studies intending to use

MSDOMs consider diel periods and covariates that are
specific to their hypotheses and model form (static or
Figure 5: Transition probabilities among each of the four diel coyote (Canis latrans) states as a function of urban intensity estimated from
13 sampling periods of camera trapping data collected in Chicago, Illinois, from 1,172 deployments at 105 unique sites between July 2016
and July 2019. Horizontal lines indicate the median estimate, while shaded ribbons represent 95% credible intervals.
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dynamic). We also greatly encourage pairing camera traps
to other remote data-logging devices. For example, remote
ambient light data loggers could be used in conjunctionwith
camera traps to determine how fine-scale variation in arti-
ficial light at night is related to a species’ diel behavior. Like-
wise, acoustic recorders could be deployed with camera
traps to explore how anthropogenic noise is associated with
a species’ diel activity. Developing studies in this context is
critical to learning how species shift their activity away from
diel periods of high risk (Gaynor et al. 2018; Gaston 2019).
Such behavioral shifts are likely not without important eco-
logical costs and may go undetected under previous model
forms but can be detected with the MSDOM.
Our case studies highlight that spatial habitat is not

used equally across diel time. We found that fosas and
coyotes temporally structure their site use in response
to anthropogenic drivers. Previous studies of fosas in
the eastern rain forests have suggested that they are ubiq-
uitously distributed across forested landscapes and are
predominantly cathemeral (Gerber et al. 2012b; Farris
et al. 2015a). By jointly investigating the spatial-temporal
habitat use of fosas, we found that they do occur widely
across forested sites but vary when they use a site based on
its proximity to anthropogenic activity. For example, fosas
at Ranomafana were nocturnal near human villages, which
occur along the edges of the protected forest. At the forest
interior, fosas were cathemeral. These findings indicate
that within specific habitats, fosas can be active during
day and night hours, but human activity and development
limit fosas to roughly half of their potential activity period.
However, the level and type of human disturbance is im-
portant in predicting fosa diel activity, as we did not find
support that human activity affected diel occurrence at
Makira; this is likely due to predictable diurnal human ac-
tivity and locations of camera sites that were connected to
core forest habitat at greater distances from human villages
(Farris et al. 2015b).
Similar to our findings for fosas, coyotes exhibited

variation in diel activity across anthropogenic gradients.
In contrast with fosas, however, coyotes are generally
considered to be crepuscular in natural environment (Mc-
Clennen et al. 2001). We found that coyotes used sites
during the day and night at low levels of urban intensity.
However, as urban intensity increased, diel use of sites
transitioned to be nocturnal. In combination with this,
we found that the marginal occupancy of coyotes, irre-
spective of diel state, decreasedwith increasing urban inten-
sity. Thus, while coyotes occupy less habitat in the core of
Chicago, the habitat they do occupy is generally used at
night.
A special feature of the dynamic MSDOM is that the

transition matrix provides additional information on diel
use, which helps disentangle the expected occupancy
patterns in how coyotes used diel time across space. For ex-
ample, while it was relatively rare for coyotes to use highly
urban sites during the day and night, their probability to
persist from one season to the next in this state was high.
Conversely, coyotes were most likely to use highly urban
sites only at night but were most likely to become locally ex-
tinct when this occurred (i.e., transition to the no-use state).
Thus, even though coyotes were more likely to use highly
urban sites at night, the use of these sites is more ephemeral
than the urban sites coyotes use throughout the entire diel
period. Because urban coyotes typically have home ranges
roughly twice the size of their rural counterparts (Gese
et al. 2012), we suspect that in the urban core coyotes use
pockets of primary habitat during the day and night and
venture out to secondary or tertiary habitat patches exclu-
sively at night, when human activity levels are low.
As the definition of habitat has evolved to better recog-

nize the value of time, so too should our modeling ap-
proaches. Our MSDOM achieves this and can measure
the effect of continuous covariates to quantify change in diel
behavior across space and though time. Although under-
standing habitat use of species has been critical in making
informed conservation andmanagement decisions (Guisan
et al. 2013), current land-planning tools are often limited to
spatial considerations (Gaynor et al. 2018). Although pro-
gress has beenmade in protecting habitats used over longer
timescales, such as seasons, we lacked informative tools to
protect habitat during critical diel periods, such as when
sensitive species are feeding or performing mating displays.
Advanced modeling approaches that estimate diel habitat
use will be an asset in supporting successful conservation
and land management strategies in a rapidly changing
world.
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